LATENT ACETONYLATION OF α , β -enones with ALLYLTRIMETHYLSILANE OR 2-METHYL-2-PROPENYLTRIMETHYLSILANE: SYNTHESIS OF 1,5-DIKETONES AND ANNELATION TO FUSED CYCLOHEXENONES¹

Akira Hosomi, Hiroshi Kobayashi, and Hideki Sakurai^{*} Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Summary: Acetonylation of α , β -enones can be achieved by reactions either with (2-methyl-2-propenyl)trimethylsilane or with allyltrimethylsilane followed by oxidative cleavage of the double bond or by the Wacker reaction, respectively. Annelation of the 1,5-diketones is also described briefly.

Acetonylation is one of the important operations in organic synthesis and a number of publications on this subject have been presented.² Recently we have demonstrated that allylsilanes are useful synthetic reagents with highly nucleophilic double bonds³ and that, with α,β -enones, conjugate allylation takes place to afford δ,ϵ -enones generally in high yield.⁴ During the course of studies on the further application of allylsilanes to organic synthesis, we have found that 2-methyl-2-propenyltrimethylsilane (1a) can also enter 1,4-reductive allylation and that the resultant δ,ϵ -enones (3a) are readily converted to 1,5-diketones (4a) by the oxidation of the olefinic part.⁵ A similar process starting from allyl-trimethylsilane (1b) resulted in the formation of $3b^4$, oxidation of which gave the corresponding δ -ketoaldehydes (4b) as shown in the following scheme.

Methyl ketones (4a) can also be obtained by the Wacker-type oxidation of the double bond of 3b (vide infra).

A β -methallyl group, as well as an allyl group, can be introduced regioselectively into the β -carbon of α,β -enones by the conjugate addition of 1 in the presence of a Lewis acid such as titanium tetrachloride and boron trifluoride etherate. Since an olefinic double bond can readily be converted to a carbonyl group by the oxidative cleavage (>C=CH₂ [0] >>C=O), δ,ϵ -enones (3) obtained by the present reaction, can be a precursor to 1,5-dicarbonyl compounds (4), useful precursors to 2-cyclohexenones⁶ and other compounds.

Oxidation of the δ, ε -enone (3) to 4, which led to methyl ketones or aldehydes, was indeed achieved simply by the ozonation followed by reductive decomposition of the resulting ozonide with zinc-acetic acid, sodium iodide, or trimethylphosphite. Oxidation with potassium permanganate-potassium periodate is also effective. Yields of the products depend both on the structure of the starting 3 and on the oxidation method. The results are summarized in Table 1 with brief description of the reaction conditions.

Alternatively, the Wacker-type oxidation of 3b catalyzed by palladium chloride-cuprous chloride in dimethylformamide^{6a} also affords methyl ketones (4a). Table 1 contains the results of the type of oxidation. (runs 8 and 10).

 $\begin{array}{c} c_{H_2} = c_{HCH_2} - c_{R}^2 c_{R}^3 c_{HR}^4 c_{OR}^5 \xrightarrow{O_2} c_{H_3} c_{OCH_2} c_{R}^2 c_{R}^3 c_{HR}^4 c_{OR}^5 \\ 3^{b} & PdCl_2 - CuCl & 4^{a} \end{array}$

Therefore, the present work demonstrates that allylsilanes la and lb can be viewed as synthetic equivalents of the acetonyl anion and/or the acetaldehyde enolate. We have previously demonstrated that lb can be a formyl anion equivalent in a certain case through isomerization of the double bond of the allylated product (3b) followed by oxidative cleavage, as shown in the next scheme.

 $CH_2 = CHCH_2 - CR^2 R^3 CHR^4 COR^5 \longrightarrow CH_3 CH = CH - CR^2 R^3 CHR^4 COR^5 \longrightarrow OCH - CR^2 R^3 CHR^4 COR^5$

Further useful application of the conjugate allylation may be displayed by cyclization, especially by the Robinson-type annelation of the oxidation products 4a to cyclic α,β -enones. Thus, 1.5-diketones (4a, $R^4, R^5 = -(CH_2)_n$ -; n=3,4) obtained by the oxidation of the corresponding 3a can be converted to fused cyclic α,β -enones (5) under a basic condition, representative examples being listed in Table 1.

The characteristic feature of the present annelation reaction stems in that the method consists of [3C + 3C] reactions; namely a three-carbon unit is introduced to an α -alkylidenecycloalkanone which may be obtained selectively from a cycloalkanone. The method can avoid the use of rather unstable methyl vinyl ketone or its equivalent in the [4C + 2C] reaction of the enolate⁸ or enamine⁹ of cyclohexanone.

Acknowledgment: We thank to Toshiba Silicone Co., Ltd., and the Mitsubishi Foundation for gifts of chlorosilanes and a partial support to the work. Our thanks are also due to Prof. A. Yoshikoshi, Tohoku University, for communicating to us his results prior to publication.¹⁰

956

	~ ~ ~		~
Entry	δ,ε-Enone (%yield) ^{a)}	l,5-Dicarbonyl Compound (%yield) ^{a)}	Cyclohexenone (%yield) ^{a)}
1	PhCHCH ₂ COCH ₃ (95) ^b CH ₂ CH=CH ₂	РЪСНСН ₂ СОСН ₃ (72) ^{С)} СН ₂ СНО (63) ^{d)}	
2	PhCHCH ₂ COCH ₃ (69) ^{e)} $CH_2C(CH_3)=CH_2$	PhCH (CH ₂ COCH ₃) ₂ $(33)^{C}$ (69) ^f	CH ₃ (69) ^{j)}
3	$\bigcup_{CH_2C(CH_3)=CH_2}^{O} (70)^{g}$	CH ₂ COCH ₃ (67) ^h	ch ₃ t 0
4	$(CH_2)_2 C (CH_3) = CH_2 (45)^{1}$	(CH ₂) ₂ COCH ₃ (57) ^h)	(76) ^{j)}
5	$\underbrace{\overset{O}{\overset{CH(CH_2)_2CH_3}{\overset{CH_2C(CH_3)=CH_2}{\overset{CH}{\overset{H}{$	$\underbrace{\overset{O}{\overset{CH}{\overset{CH}{\overset{CH}{\overset{CH}{_2}}}}}_{\overset{CH}{\overset{CH}{_2}}}^{CH} (CH_2) _2 CH_3} (72)^{h}$) $(76)^{\text{CH}_2\text{CH}_2\text{CH}_3}$
6	⁰ (99) ¹) CH ₂ C(CH ₃)=CH ₂	CH ₂ COCH ₃ (61) ^h	
7	$\bigcup_{\substack{I \\ CH_2C(CH_3)=CH_2}}^{O} (74)^{m}$	O CHCH ₃ (85) ^h) CH ₂ COCH ₃	CH ₃ (82) ^{j)}
8	$\bigcup_{\substack{I \\ CH_2CH=CH_2}}^{O} (45)^{n}$	CHCH ₃ (72) ^{o)} CH ₂ COCH ₃	
9	$\bigcup_{i=1}^{O} (CH(CH_2)_2CH_3(67)^p) \\ CH_2C(CH_3)=CH_2$	$\bigcup_{\substack{i=1\\cH_2\text{COCH}_3}}^{O} (\text{CH}_2)_2 \text{CH}_3 (65)^h$) (60) (60)
10	$\bigcup_{\substack{l \\ ch_2 ch=ch_2}}^{O} CH(CH_2)_2 CH_3 (52)^{q}$	$\bigcup_{\substack{I \\ CH_2 COCH_3}}^{O} (64)^{O}$)

Table 1. Synthesis of δ, ε -enones (3) followed by oxidation to 1,5-dicarbonyl compounds (4) and cyclization to cyclohexenones (5)

^a Yields after isolation by TLC. ^b Me₃SiCH₂CH=CH₂ (1b), PhCH=CHCOCH₃, TiCl₄, CH₂Cl₂, -30°, 5 min. ^c 1) O₃, CH₂Cl₂ or MeOH, -78°; 2) NaI, AcOH, MeOH, 0°, 1h. ^d 1) O₃, CH₂Cl₂, -78°; 2) P(OMe)₃, rt, 20 min. ^e Me₃SiCH₂C(CH₃)=CH₂ (1a), PhCH= CHCOCH₃, TiCl₄, CH₂Cl₂, -78°, 30 sec. ^f KIO₄, KMnO₄, K₂CO₃, H₂O, rt, 19 h. ^g la, 2-Cyclopentenone, TiCl₄, CH₂Cl₂, -78°, 10 min. ^h 1) O₃, CH₂Cl₂, -78°; 2) Zn, AcOH, H₂O, rt, 1h. ⁱ la, 2-Methylenecyclopentanone, BF₃·OEt₂, CH₂Cl₂, -78°, 1h. ^j 2% KOH-H₂O, MeOH, reflux, 3h. ^k la, 2-Butylidenecyclopentanone, TiCl₄, -78°, 30 min. ¹ 1a, 2-Cyclohexenone, TiCl₄, -78°, 10 min. ^m la, 2-Ethylidenecyclohexanone, TiCl₄, CH₂Cl₂, -78°, 1h. ⁿ 1b, 2-Ethylidenecyclohexanone, ¹¹ TiCl₄, CH₂Cl₂, -78°, 2h. ^O PdCl₂, CuCl, O₂, DMF, H₂O, rt, 2h. ^p 1a, 2-Butylidenecy cyclohexanone, TiCl₄, CH₂Cl₂, -78°, 30 min. ^q 1b, 2-Butylidenecyclohexanone, ¹¹ TiCl₄, CH₂Cl₂, -78°, 2h.

References and Notes

- 1. Chemistry of Organosilicon Compounds. 135.
- 2. a) R. M. Jacobson, R. A. Raths, and J. H. McDonald III, J. Org. Chem., <u>42</u>, 2545 (1977); b) T. Nakai, J. Syn. Org. Chem., Japan, <u>36</u>, 49 (1978), and references cited therein.
- 3. For recent reports, see a) A. Hosomi, H. Hashimoto, and H. Sakurai, J. Org. Chem., <u>43</u>, 2551 (1978); b) A. Hosomi and H. Sakurai, Tetrahedron Lett., 2589 (1978); c) A. Hosomi, M. Saito, and H. Sakurai, ibid., 429 (1979).
- 4. A. Hosomi and H. Sakurai, J. Am. Chem. Soc., 99, 1673 (1977).
- Satisfactory spectral data and elemental analyses were obtained for all products.
- For recent reports, see a) J. Tsuji, I. Shimizu, and K. Yamamoto, Tetrahedron Lett., 2975 (1975); b) K. Narasaka, K. Soai, and T. Mukaiyama, Chem. Lett., 1223 (1974).
- 7. E. D. Bergmann, K. Ginsberg, and R. Rappo, Org. Reactions, 10, 179 (1959).
- a) J. A. Marshall and W. I. Fanta, J. Org. Chem., <u>29</u>, 2501 (1964); b) N. C. Ross and R. Levine, ibid., <u>29</u>, 2341 (1964).
- 9. a) G. Stork, A. Brizzolara, H. H. Landesman, J. Szmuszkovicz, and R. Terrell, J. Am. Chem. Soc., <u>85</u>, 216 (1963); b) W. G. Dauben, G. W. Schaffer, and N. D. Vietmeyer, J. Org. Chem., <u>33</u>, 4060 (1968).
- 10. Professor A. Yoshikoshi and his coworkers are carrying out a work according to a similar synthetic design. See, T. Yanami, M. Miyashita, and A. Yoshikoshi, Chem. Commun., 525(1979).

11. In these cases, 6 was isolated by GLC as a by-product. Details will be reported later. 0 R 0 R 0 R

(Received in Japan 12 December 1979)