LATENT ACETONYLATION OF α . S-ENONES WITH ALLYLTRIMETHYLSILANE OR 2-METHYL-2-PROPENYLTRIMETHYLSILANE: SYNTHESIS OF 1,5-DIKETONES AND ANNELATION TO FUSED CYCLOHEXENONES

Akira Hosomi, Hiroshi Kobayashi, and Hideki Sakurai* Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Summary: Acetonylation of α , β -enones can be achieved by reactions either with (Z-methyl-2-propenyl)trimethylsilane or with allyltrimethylsilane followed by oxidative cleavage of the double bond or by the Wacker reaction, respectively. Annelation of the 1,5-diketones is also described briefly.

Acetonylation is one of the important operations in organic synthesis and a number of publications on this subject have been presented.² Recently we have demonstrated that allylsilanes are useful synthetic reagents with highly nucleophilic double bonds³ and that, with α , β -enones, conjugate allylation takes place to afford δ , ε -enones generally in high yield.⁴ During the course of studies on the further application of allylsilanes to organic synthesis, we have found that 2-methyl-2-propenyltrimethylsilane (1a) can also enter 1,4-reductive allylation and that the resultant δ , ε -enones (3a) are readily converted to 1,5-diketones (4a) by the oxidation of the olefinic part.⁵ A similar process starting from ally1trimethylsilane (Lb) resulted in the formation of $3b^4$, oxidation of which gave the corresponding δ -ketoaldehydes (4b) as shown in the following scheme.

Methyl ketones (4a) can also be obtained by the Wacker-type oxidation of the double bond of 3b (vide infra).

A B-methallyl group, as well as an ally1 group, can be introduced regioselectively into the β -carbon of α , β -enones by the conjugate addition of 1 in the presence of a Lewis acid such as titanium tetrachloride and boron trifluoride etherate. Since an olefinic double bond can readily be converted to a carbonyl group by the oxidative cleavage (>C=CH₂ $\frac{[0]}{2}$ >C=O), δ , e-enones (3) obtained by the present reaction, can be a precursor to $1,5$ -dicarbonyl compounds (4), useful precursors to 2-cyclohexenones⁶ and other compounds.

Oxidation of the δ , ε -enone (3) to 4 , which led to methyl ketones or aldehydes, was indeed achieved simply by the ozonation followed by reductive decomposition of the resulting ozonide with zinc-acetic acid, sodium iodide, or trimethylphosphite. Oxidation with potassium permanganate-potassium periodate is also effective. Yields of the products depend both on the structure of the starting 3 and on the oxidation method. The results are summarized in Table 1 with brief description of the reaction conditions.

Alternatively, the Wacker-type oxidation of Ab catalyzed by palladium chloride-cuprous chloride in dimethylformamide^{6a} also affords methyl ketones (4a). Table 1 contains the results of the type of oxidation. (runs 8 and 10).

 $\text{CH}_2=\text{CHCH}_2-\text{CR}^2\text{R}^3\text{CHR}^4\text{COR}^5$ $\longrightarrow_{\text{PdCl}_2-\text{CuCl}}$ CH₂COCH₂CR²CHR³COR³ λ^{B} λ^{Aa}

Therefore, the present work demonstrates that allylsilanes la and lb can be viewed as synthetic equivalents of the acetonyl anion and/or the acetaldehyde enolate. We have previously demonstrated that 1b can be a formyl anion equivalent in a certain case through isomerization of the double bond of the allylated product (3b) followed by oxidative cleavage, as shown in the next scheme.

 $CH_2=CHCH_2-CR^2R^3CHR^4COR^5 \longrightarrow CH_3CH=CH-CR^2R^3CHR^4COR^5 \longrightarrow OCH-CR^2R^3CHR^4COR^5$

Further useful application of the conjugate allylation may be displayed by cyclization, especially by the Robinson-type annelation of the oxidation products A a to cyclic α , β -enones. Thus, 1,5-diketones (A a, R^4 , R^5 =-(CH₂)_n-; n=3,4) obtained by the oxidation of the corresponding $2a$ can be converted to fused cyclic α, β -enones (5) under a basic condition, representative examples being listed in Table 1.

The characteristic feature of the present annelation reaction stems in that the method consists of [3C + 3C] reactions; namely a three-carbon unit is introduced to an a-alkylidenecycloalkanone which may be obtained selectively from a cycloalkanone. The method can avoid the use of rather unstable methyl vinyl ketone or its equivalent in the $[4C + 2C]$ reaction of the enolate⁸ or enamine⁹ of cyclohexanone.

Acknowledgment: We thank to Toshiba Silicone Co., Ltd., and the Mitsubishi Foundation for gifts of chlorosilanes and a partial support to the work. Our thanks are also due to Prof. A. Yoshikoshi, Tohoku University, for communicating to us his results prior to publication. 10

9%

Entry	δ, ε-Enone (%yield) ^{a)}	1,5-Dicarbonyl	Cyclohexenone $(\text{special})^{\text{a}}$
$\mathbf{1}$	(95) ^b PhCHCH ₂ COCH ₃ $CH_2CH=CH_2$	Compound (%yield) ^{a)} $(72)^{c}$ PhQHCH ₂ COCH ₃ $(63)^{d}$ $\rm \dot{\rm c}h_2$ сно	
$\boldsymbol{2}$	$(69)^e$ PhCHCH ₂ COCH ₃ CH_2C (CH ₃) = CH ₂	$(33)^{c}$ PhCH $\left(\text{CH}_2\text{COCH}_3\right)_2$ $\left(69\right)\,^{\rm f)}$	Ph $(69)^{\text{ }j \text{ }}$
3	$(70)^{(q)}$ $CH_2C(CH_3) = CH_2$	$(67)^{h}$ CH ₂ COCH ₃	CH ₃
4	(CH_2) ₂ C (CH_3) = CH_2 $(45)^{\text{i}}$	$\frac{\text{(CH)}_{2}\text{)}_{2}\text{COCH}_{3}}{2}$ $(57)^{h}$	$(76)^{\text{ }j)}$
5	$\frac{1}{1}$ CH(CH ₂) ₂ CH ₃ (82) ^{k)} $C_{\text{H}_{2}C}^{1}$ $C_{\text{H}_{3}} = C_{\text{H}_{2}}$	$\zeta_{\text{CH}_2\text{COCH}_3}^{\text{CH} \text{(CH}_2\text{)}_2\text{CH}_3}$ (72) ^{h)}	$CH2CH2CH3$ $(76)^{j}$
6	$(99)^{1}$ CH_{2}^{\bullet} C(CH ₃) = CH ₂	(61) h) CH ₂ COCH ₃	
$\boldsymbol{7}$	$(74)^{m}$ CHCH ₃ $\text{CH}_{2}C(\text{CH}_{3})$ = CH ₂	$(85)^{h}$ CHCH_{3}^1 CH ₂ COCH ₃	$\left(82\right)\dot{1}$
8	$(45)^{n}$ CHCH_3 CH_{2} CH=CH ₂	$(72)^{0}$ ζ нсн ₃ CH_2COCH_3	
9	CH(CH ₂) ₂ CH ₃ (67) ^P) $CH_2C(CH_3) = CH_2$	$_{(65)}$ $^{\rm h)}$ $c_{\rm H_2COCH_3}^{C \rm H~(CH_2)~2}$ C _H ₂ CoC _H ₃	$C_{1}^{H}C_{2}^{H}C_{3}^{H}$ $\left(60$) $^{\dot{\overline{\mathrm{J}}}}$
${\bf 10}$	$c_{\text{H}_2 \text{CH}_2 \text{CH}_2}^{\text{CH} \text{(CH}_2)} 2^{\text{CH}_3}$ (52) ^{q)}	O (64) ^O $C_{\rm H_2COCH_3}^{C_{\rm H~(CH_2)~2}CH_3}$	

Table 1. Synthesis of δ , ε -enones χ followed by oxidation to 1,5-dicarbonyl **compounds (\$) and cyclization to cyclohexenones (5) hr**

 $^\alpha$ Yields after isolation by TLC. $^\omega$ Me₃SiCH₂CH=CH₂ (Lb), PhCH=CHCOCH₃, TiCl₄, CH₂Cl₂, -30°, 5 min. ^o 1) O₃, CH₂Cl₂ or MeOH, -78°; 2) NaI, AcOH, MeOH, 0°, lh. α 1) 0^{3} , CH₂C1₂, -78°; 2) P(OMe)₃, rt, 20 min. CHCOCH₃, TiC1₄, CH₂C1₂, -78°, 30 sec. ^f Me ₃SiCH₂C(CH₃)=CH₂ (la), PhCH= KIO_{4} , KMnO₄, K₂CO₃, H₂O, rt, 19h. ⁹ 1a, 2-Cyclopentenone, TiCl₄, CH₂Cl₂, -78°, 10 min. ^h 1) 0₃, CH₂Cl₂, -78°; 2) Zn, AcOH, H_2O , rt, lh. $^+$ la, 2-Methylenecyclopentanone, BF₃.OEt₂, CH₂Cl₂, -78°, lh. 3 2% KOH-H₂O, MeOH, reflux, 3h. $\frac{1}{1}$ a, $^{\texttt{+}}$ la, 2-Cyclohexenone, TiCl $_{\texttt{\scriptsize{A}}}$ 2-Butylidenecyclopentanone, TiCl_a, -78°, 30 min. \uparrow 1a, 2-Cyclohexenone, TiCl₄, -78°, 10 min. ^m 1a, 2-Ethylidenecyclohexanone, TiCl₄, CH₂Cl₂, -78°, lh. ⁷ⁿ lb, 2-Ethylidenecyclohexanone, ¹¹ TiCl₄, CH₂C1₂, -78°, 2h. ^o PdC₁₂, CuC1, 0₂, DMF, H₂O, rt, 2h. ^p la, 2-Butylidene-⁴ cyclohexanone, TiCl₄, CH₂Cl₂, -78°, 30 min. ^{"q} lb, 2-Butylidenecyclohexanone, ¹¹ TiCl_A, CH₂Cl₂, -78°, 2h.

References and Notes

- 1. Chemistry of Organosilicon Compounds. 135.
- 2. a) R. M. Jacobson, R. A. Raths, and J. H. McDonald III, J. Org. Chem., 42 , 2545 (1977); b) T. Nakai, J. Syn. Org. Chem., Japan, 36, 49 (1978), and references cited therein.
- 3. For recent reports, see a) A. Hosomi, H. Hashimoto, and H. Sakurai, J. Org. Chem., 43, 2551 (1978); b) A. Hosomi and H. Sakurai, Tetrahedron Lett., 2589 (1978);;) A. Hosomi, M. Saito, and H. Sakurai, ibid., 429 (1979).
- 4. A. Hosomi and H. Sakurai, J. Am. Chem. Sot., 99, 1673 (1977).
- 5. Satisfactory spectral data and elemental analyses were obtained for all products.
- 6. For recent reports, see a) J. Tsuji, I. Shimizu, and K. Yamamoto, Tetrahedron Lett., 2975 (1975); b) K. Narasaka, K. Soai, and T. Mukaiyama, Chem. Lett., 1223 (1974).
- 7. E. D. Bergmann, K. Ginsberg, and R. Rappo, **Org.** Reactions, 10, 179 (1959).
- 8. a) J. A. Marshall and W. I. Fanta, J. Org. Chem., <u>29</u>, 2501 (1964); b) N. C. Ross and R. Levine, ibid., 29, 2341 (1964).
- 9. a) G. Stork, A. Brizzolara, H. H, Landesman, J. Szmuszkovicz, and R. Terrell, J. Am. Chem. Soc., 85, 216 (1963); b) W. G. Dauben, G. W. Schaffer, and N. D. Vietmeyer, J. Org. Chem., 33, 4060 (1968).
- 10. Professor A.Yoahikosfi and his coworkers are carrying out a work according to a similar synthetic design. See, T. Yanami, M. Miyashita, and A. Yoshikoshi, Chem. Commun., 525(1979) .

ll. In these cases, 6 was isolated by GLC as a by-product. Details will be reported later.

(Received in Japan 12 December 19791